UI - Skripsi (Membership) :: Kembali

UI - Skripsi (Membership) :: Kembali

Biosintesis nanopartikel Au menggunakan ekstrak bawang putih (allium sativum l.) sebagai pendeteksi formalin = Biosynthesis Au nanoparticles using garlic extract (allium sativum l.) as and melamine formaldehyde detector

Nomor Panggil S61497
Pengarang
Pengarang lain/Kontributor
Subjek
Penerbitan Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
Program Studi
 Abstrak
[Senyawa bahan alam yang mengandung banyak senyawa pereduksi dan gugus-gugus organik kurang termanfaatkan dengan baik untuk sintesis nanopartikel. Ekstrak bawang putih (EBP) (allium sativum L) dapat dimanfaatkan sebagai reaktan dalam pembuatan nanopartikel Au (AuNP). EBP dapat mereduksi dan menstabilkan AuNP. AuNP di karakterisasi menggunakan spektrofotometer UV-Vis dan TEM sedangkan EBP dikarakterisasi menggunakan FTIR, dan LCMS. AuNP optimum yang di karakterisasi menggunakan TEM memiliki ukuran 15 nm dan memiliki kestabilan hingga 33 hari. Berdasarkan hasil FTIR dan LCMS, senyawa aktif yang diduga berperan sebagai agen pereduksi adalah asam askorbat (vitamin C), gula bebas seperti, surosa, glukosa, dan fruktosa, allin, alicin, dan s-alilsitein dan senyawa aktif yang diduga berperan sebagai agen penstabil adalah -glutamilsistein, -glutamil-s-alilsistein, -glutamil phenil alanin, s-alil mercaptosistein, metil alil tiosulfonat, dan prophenil alil tiosulfonat. AuNP yang terbentuk dapat dimanfaatkan sebagai pendeteksi terhadap formalin dan melamin pada kondisi pH 3,6.
Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6., Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.]
 File Digital: 1
Shelf
 S61497-Lingga Abdurrachman.pdf ::
 Info Lainnya
001 Hak Akses (open/membership)membership
700 Entri Tambahan Nama OrangYoki Yulizar, supervisor; Agustino Zulys, examiner; Ivandini Tribidasari Anggraningrum, examiner; Jarnuzi Gunlazuardi, examiner
336 Content Typetext (rdacontent)
264b Nama PenerbitFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia
710 Entri Tambahan Badan KorporasiUniversitas Indonesia. Fakultas Matematika dan Ilmu Pengetahuan Alam
049 No. Barkod14-22-27828912
852 LokasiPerpustakaan UI, Lantai 3
504 Catatan Bibliografipages 83-89
338 Carrier Typevolume (rdacarrier); online resource (rdacarrier
590 Cat. Sumber Pengadaan KoleksiUnggah UI-ANA-6
903 Stock Opname
Tahun Buka Akses2016
053 No. Induk14-22-27828912
653 Kata Kuncibiosintesis; senyawa aktif; formalin; melamin; nanopartikel Au; ekstrak bawang putih; allium sativum l.
040 Sumber PengataloganLibUI ind rda
245 Judul UtamaBiosintesis nanopartikel Au menggunakan ekstrak bawang putih (allium sativum l.) sebagai pendeteksi formalin = Biosynthesis Au nanoparticles using garlic extract (allium sativum l.) as and melamine formaldehyde detector
264c Tahun Terbit2015
650 Subyek TopikFormaldehyde; Garlic -- Health aspects
850 Lembaga PemilikUniversitas Indonesia
520 Ringkasan/Abstrak/IntisariCompounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.
904b Pemeriksa Lembar KerjaAmiarsih Indah Purwiati-Juni 2022
090 No. Panggil SetempatS61497
d-Entri Utama Nama Orang
500 Catatan UmumAkan ditulis dalam bahasa Inggris untuk dipersiapkan terbit pada Jurnal Internasional yaitu.... - Akan ditulis dalam bahasa Inggris untuk dipersiapkan terbit pada Jurnal Internasional yaitu spectrochemica ACTA yang diprediksi akan dipublikasikan pada bulan januar tahun 2016
d-Entri Tambahan Nama Orang
337 Media Typeunmediated (rdamedia); computer (rdamedia)
526 Catatan Informasi Program StudiKimia
100 Entri Utama Nama OrangLingga Abdurrachman, author
264a Kota TerbitDepok
300 Deskripsi Fisikxv, 89 pages : illustration ; 28 cm + appendix
904a Pengisi Lembar KerjaSuharsi 2016
Akses Naskah Ringkas
856 Akses dan Lokasi Elektronik
502 Catatan Jenis KaryaSkripsi
246 Judul Alternatif
041 Kode Bahasaind
  • Ketersediaan
  • Ulasan
  • Sampul
Nomor Panggil No. Barkod Ketersediaan
S61497 14-22-27828912 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20413430
[Senyawa bahan alam yang mengandung banyak senyawa pereduksi dan gugus-gugus organik kurang termanfaatkan dengan baik untuk sintesis nanopartikel. Ekstrak bawang putih (EBP) (allium sativum L) dapat dimanfaatkan sebagai reaktan dalam pembuatan nanopartikel Au (AuNP). EBP dapat mereduksi dan menstabilkan AuNP. AuNP di karakterisasi menggunakan spektrofotometer UV-Vis dan TEM sedangkan EBP dikarakterisasi menggunakan FTIR, dan LCMS. AuNP optimum yang di karakterisasi menggunakan TEM memiliki ukuran 15 nm dan memiliki kestabilan hingga 33 hari. Berdasarkan hasil FTIR dan LCMS, senyawa aktif yang diduga berperan sebagai agen pereduksi adalah asam askorbat (vitamin C), gula bebas seperti, surosa, glukosa, dan fruktosa, allin, alicin, dan s-alilsitein dan senyawa aktif yang diduga berperan sebagai agen penstabil adalah -glutamilsistein, -glutamil-s-alilsistein, -glutamil phenil alanin, s-alil mercaptosistein, metil alil tiosulfonat, dan prophenil alil tiosulfonat. AuNP yang terbentuk dapat dimanfaatkan sebagai pendeteksi terhadap formalin dan melamin pada kondisi pH 3,6.


Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.;Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6., Compounds of natural product that many contain reducing compounds and organic groups are less well utilized for the synthesis of nanoparticles. Garlic exstract (EBP) (allium sativum L) can be used as a reactant in the manufacture of nanoparticles Au (AuNP). EBP can reduce dan stabilize AuNP. AuNP characterized using spectrophotometer UV-Vis and TEM while EBP characterized using FTIR and LCMS. AuNP optimum that characterized by TEM has size 15 nm and has stability up to 33 days. Based on the results of FTIR and LCMS, the active compounds are expected have role as reducing agent is ascorbic acid (vitamin C), free sugar such as, sukrose, glucose, and fructose, allin, Alicin, and s-alilsitein and the active compounds are thought to act as a stabilizing agent is γ-glutamilsistein, γ-glutamyl-s-alilsistein, γ-glutamyl phenil alanine, s-allyl mercaptosistein, allyl methyl tiosulfonat, and allyl prophenil tiosulfonat. Aunp formed can be used as a detector of the formaldehyde and melamine at pH 3.6.]